\qquad

Lesson
 11.1
 Reteach

Two or more numbers that have the same value are equivalent.
Two or more fractions that name the same part of a whole are equivalent fractions.

Example Use the models to find an equivalent fraction for $\frac{3}{4}$.

The two models represent equivalent fractions. The shaded parts of both models show the same whole.

$$
\frac{3}{4} \text { and } \frac{6}{8} \text { are equivalent fractions. So, } \frac{3}{4}=\frac{6}{8} \text {. }
$$

Tell whether the shape shows equal parts or unequal parts. If the shape shows equal parts, then name them.
1.

2.

3. Shade 3 parts of the model. Then divide the model into 8 equal parts. Write the equivalent fraction.

Name \qquad

Lesson
 11.2
 Reteach

Equivalent fractions represent the same point on a number line.
Example Use a number line to find an equivalent fraction for $\frac{2}{3}$.
Step 1: Plot $\frac{2}{3}$ on a number line.
Step 2: Divide the number line into sixths (six equal parts).

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Step 3: Label each tick mark to show sixths.

Think: One $\frac{1}{6}$ is $\frac{1}{6}$. Two $\frac{1}{6}$ s are $\frac{2}{6}$.
Step 4: Find the fraction that names the same point as $\frac{2}{3}$.
The fractions that name the same point are $\frac{2}{3}$ and $\frac{4}{6}$. So, $\frac{2}{3}=\frac{4}{6}$.

Use the number line to find an equivalent fraction.

1. Use the number line to find an equivalent fraction.

2. Write two fractions that name the point shown.

Name \qquad

Lesson
 11.3
 Reteach

Complete the number line. Then complete the statements.
1 whole divided into 1 equal part $=\frac{1}{1}$.

2 wholes each divided into 1 equal part $=\frac{2}{1}$.

1. Complete the number line. Then complete the statements.

$$
1=\frac{\square}{1}=\frac{\square}{2}=\frac{\square}{4}
$$

Name \qquad

Lesson

11.4

Reteach

Compare $\frac{1}{3}$ and $\frac{2}{3}$.
One Way: Use Fraction Strips.
Think:

More $\frac{1}{3}$ s are shaded to show $\frac{2}{3}$. So, $\frac{1}{3}$ is less than $\frac{2}{3}$, and $\frac{1}{3}<\frac{2}{3}$.

Another Way: Think: Are the denominators the same? If the denominators are the same, the whole is divided into the same number of equal parts.

So, look at the numerators to compare. The fraction with the greater numerator is the greater fraction.

$\frac{1}{3} \quad$| numerator \rightarrow |
| :--- |
| denominator \rightarrow |\quad Because $1<2, \frac{1}{3}<\frac{2}{3}$.

Shade to compare the fractions.
1.

2.

1			
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

\qquad
Lesson

Reteach

Compare $\frac{3}{4}$ and $\frac{3}{8}$.
One Way: Use Fraction Strips.

Think: One $\frac{1}{4} \mathrm{~s}$ is $\frac{3}{4} . \rightarrow$| $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ |
| :---: | :---: | :---: | :---: |

Two $\frac{1}{8} \mathrm{~s}$ is $\frac{3}{8} . \rightarrow$| $\frac{1}{8}$ | $\frac{1}{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

More $\frac{1}{3}$ s are shaded to show $\frac{2}{3}$. So, $\frac{1}{3}$ is less than $\frac{2}{3}$, and $\frac{1}{3}<\frac{2}{3}$.

Another Way: Think: Are the numerators the same?

- The more parts the whole is divided into, the smaller the parts are.
- The fewer parts the whole is divided into, the larger the parts are.

The fraction with the greater denominator is the lesser fraction.
$\frac{3}{4}$ denominator $\frac{3}{8} \quad \rightarrow \quad$ So, $\frac{3}{4}$ is greater then $\frac{3}{8}$, and $\frac{3}{4}>\frac{3}{8}$.

Shade to compare the fractions.
1.

1			
$\frac{1}{2}$		$\frac{1}{2}$	
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

2.

Name \qquad

Lesson
 11.6
 Reteach

On a number line, fractions to the left are less than fractions to the right.
Fractions to the right are greater than fractions to the left.
Example Use a number line to compare $\frac{2}{4}$ and $\frac{2}{8}$.
Step 1: Plot the fractions on a number line.
Step 2: Think: As you move to the right along a number line, the numbers increase.

Use the number line to compare the fractions.

\qquad

Lesson
 11.7
 Reteach

Example Compare $\frac{3}{4}$ and $\frac{7}{8}$.
Step 1: Use fraction strips.

Think: Three $\frac{1}{4} \mathrm{~s}$ is $\frac{3}{4} . \rightarrow$| $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ |
| :---: | :---: | :---: | :---: |

Seven $\frac{1}{8} \mathrm{~s}$ is $\frac{7}{8} . \rightarrow$| 8 | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Step 2: Think: Which fraction has the larger missing piece? This is the lesser fraction.

$$
\text { So, } \frac{3}{48}<\frac{7}{8} \text {. }
$$

Example Compare $\frac{1}{8}$ and $\frac{5}{8}$.
Think: Are the denominators the same? If the denominators are the same, the fraction with the greater numerator is the greater fraction.

Because $1<5, \frac{1}{8}<\frac{5}{8}$.

Example Compare $\frac{3}{6}$ and $\frac{3}{8}$.
Think: Are the numerators the same? If the numerators are the same, the fraction with the greater denominator is the lesser fraction.

Because $6<8, \frac{3}{6}>\frac{3}{8}$.

Compare.

1. $\frac{2}{4} \bigcirc \frac{2}{6}$
2.

3.
 $\frac{5}{6}$
4.

$\frac{4}{5}$
\qquad

Lesson
 11.8
 Reteach

To write three fractions in order, choose a strategy to compare them.
A number line is useful when the fractions have the same denominator. Fraction Strips are useful when the denominators are different.

Example Order the fractions $\frac{3}{4}, \frac{3}{8}$, and $\frac{3}{6}$ from least to greatest.
Step 1: The denominators are different, so use Fraction Strips.

Step 2: Compare the parts.
Think: Which part is the shortest? Which is the longest?
$\frac{3}{8}$ is the shortest. $\frac{3}{4}$ is the longest.
$\frac{3}{6}$ is between the other two fractions.
So, the order from least to greatest is $\frac{3}{8}, \frac{3}{6}, \frac{3}{4}$.

1. Order the fractions $\frac{2}{8}, \frac{2}{3}$, and $\frac{2}{4}$ from least to greatest.

